Orthogonale veeltermen

In wiskunde, een familie van polynomen die er elk heeft een polynoom van de graad, bijvoorbeeld een reeks van orthogonale polynomen in het interval ten opzichte van het gewicht functie van positieve indien gekozen

Terwijl de polynomen van elke polynoom sequentie als dragers van een vectorruimte onderling lineair onafhankelijk kan worden beschouwd, kunnen de componenten van een reeks orthogonale polynomen geacht onderling orthogonale vectoren van een vectorruimte met inproduct, wanneer deze functie bilineaire aanvragen die definiëren toegepast op elk paar polynomen en dia

Voorbeelden van sequenties van orthogonale polynomen zijn:

  • De Hermite veeltermen en orthogonaal ten opzichte van de normale verdeling van probabiliteiten
  • De Chebyshev polynomen van de eerste soort, in het bereik van orthogonaal ten opzichte van het weegfunctie
  • Čebyšëv veeltermen van de tweede soort, orthogonale bereik dan het gewicht functie
  • De Legendre veeltermen, orthogonale bereik dan de uniforme kansverdeling
  • Gegenbauer veeltermen, orthogonale bereik dan de kansverdeling
  • Jacobi veeltermen, orthogonale bereik dan de kansverdeling
  • De Laguerre veeltermen met orthogonale bereik dan de kansverdeling

Een andere mogelijkheid is een binnenlands product definiëren:

waar zijn gehele getallen in het bereik. Met deze definitie

  • de Chebyshev polynomen zijn orthogonaal ten opzichte van de verdeling;
  • Charlier polynomen zijn orthogonaal ten opzichte van de verdeling.

Er is een classificatie van orthogonale polynomen uitgevonden door de Amerikaanse wiskundige Richard Askey met de hypergeometrische functies.

Veeltermen orthonormale

In lijn met de definitie van orthonormale basis, worden orthogonale veeltermen orthonormale genoemd indien zij voldoen aan de relatie:

per.

(0)
(0)
Commentaren - 0
Geen reacties

Voeg een Commentaar

smile smile smile smile smile smile smile smile
smile smile smile smile smile smile smile smile
smile smile smile smile smile smile smile smile
smile smile smile smile
Tekens over: 3000
captcha